418 research outputs found

    Induced pluripotent stem cells (iPSCs) derived from cerebrotendinous xanthomatosis (CTX) patient's fibroblasts carrying a R395S mutation

    Get PDF
    AbstractInduced pluripotent stem cells (iPSCs) were generated from dermal fibroblasts from a 60-year-old cerebrotendinous xanthomatosis (CTX) patient, carrying a homozygous mutation c. [1183C>A]; p. R395S in CYP27A1. Episomal plasmids encoding the pluripotency genes OCT4, SOX2, KLF4, L-MYC and LIN28 were introduced via electroporation. The generated line iPS-CTX-R395S has no sign of plasmid integration or chromosomal aberration and retained the mutation site in CYP27A1. Furthermore, iPSCs express pluripotency markers and are able to differentiate in all germ layers in vitro. The generated line may be a useful tool for disease modelling of CTX

    Generation of the CRISPR/Cas9-mediated KIF1C knock-out human iPSC line HIHRSi003-A-1

    Get PDF
    Bi-allelic loss-of-function mutations in the gene encoding the motor protein KIF1C are associated with Hereditary Spastic Paraplegia (HSP) type SPG58, a slowly progressive neurodegenerative motoneuron disease. The biological role of KIF1C is incompletely understood. We used a protein-based CRISPR/Cas9 genome editing approach to generate a homozygous KIF1C knock-out iPSC line (HIHRSi003-A-1) from a healthy control. This iPSC-KIF1C/^{-/-} line and the corresponding isogenic control are a useful model to study the physiological function of KIF1C and the pathophysiological consequences of KIF1C dysfunction in human disease

    Real-time use of audio-biofeedback can improve postural sway in patients with degenerative ataxia

    Get PDF
    Abstract Objective Cerebellar ataxia essentially includes deficient postural control. It remains unclear whether augmented sensory information might help cerebellar patients, as the cerebellum underlies processing of various sensory modalities for postural control. Here, we hypothesized that patients with cerebellar degeneration can still exploit audio‐biofeedback (ABF) of trunk acceleration as a real‐time assistive signal to compensate for deficient postural control. Methods Effects on postural sway during stance were assessed in an ABF intervention group versus a no‐ABF disease control group (23 vs. 17 cerebellar patients) in a clinico‐experimental study. A single‐session ABF paradigm of standing plus short exergaming under ABF was applied. Postural sway with eyes open and eyes closed was quantified prior to ABF, under ABF, and post ABF. Results Postural sway in the eyes closed condition was significantly reduced under ABF. Both benefit of ABF and benefit of vision correlated with the extent of postural sway at baseline, and both types of sensory benefits correlated with each other. Patients with strongest postural sway exhibited reduced postural sway also with eyes open, thus benefitting from both vision and ABF. No changes were observed in the no‐ABF control group. Interpretation Our findings provide proof‐of‐principle evidence that subjects with cerebellar degeneration are still able to integrate additional sensory modalities to compensate for deficient postural control: They can use auditory cues functionally similar to vision in the absence of vision, and additive to vision in the presence of vision (in case of pronounced postural sway). These findings might inform future assistive strategies for cerebellar ataxia

    ADHD candidate gene (DRD4 exon III) affects inhibitory control in a healthy sample

    Get PDF
    <p>Background</p> <p>Dopamine is believed to be a key neurotransmitter in the development of attention-deficit/hyperactivity disorder (ADHD). Several recent studies point to an association of the dopamine D4 receptor (DRD4) gene and this condition. More specifically, the 7 repeat variant of a variable number of tandem repeats (VNTR) polymorphism in exon III of this gene is suggested to bear a higher risk for ADHD. In the present study, we investigated the role of this polymorphism in the modulation of neurophysiological correlates of response inhibition (Go/Nogo task) in a healthy, high-functioning sample.</p> <p>Results</p> <p>Homozygous 7 repeat carriers showed a tendency for more accurate behavior in the Go/Nogo task compared to homozygous 4 repeat carriers. Moreover, 7 repeat carriers presented an increased nogo-related theta band response together with a reduced go-related beta decrease.</p> <p>Conclusions</p> <p>These data point to improved cognitive functions and prefrontal control in the 7 repeat carriers, probably due to the D4 receptor's modulatory role in prefrontal areas. The results are discussed with respect to previous behavioral data on this polymorphism and animal studies on the impact of the D4 receptor on cognitive functions.</p

    Uniparental disomy of chromosome 16 unmasks recessive mutations of FA2H/SPG35 in 4 families

    Get PDF
    Objective: Identifying an intriguing mechanism for unmasking recessive hereditary spastic paraplegias. Method: Herein, we describe 4 novel homozygous FA2H mutations in 4 nonconsanguineous families detected by whole-exome sequencing or a targeted gene panel analysis providing high coverage of all known hereditary spastic paraplegia genes. Results: Segregation analysis revealed in all cases only one parent as a heterozygous mutation carrier whereas the other parent did not carry FA2H mutations. A macro deletion within FA2H, which could have caused a hemizygous genotype, was excluded by multiplex ligation-dependent probe amplification in all cases. Finally, a microsatellite array revealed uniparental disomy (UPD) in all 4 families leading to homozygous FA2H mutations. UPD was confirmed by microarray analyses and methylation profiling. Conclusion: UPD has rarely been described as causative mechanism in neurodegenerative diseases. Of note, we identified this mode of inheritance in 4 families with the rare diagnosis of spastic paraplegia type 35 (SPG35). Since UPD seems to be a relevant factor in SPG35 and probably additional autosomal recessive diseases, we recommend segregation analysis especially in nonconsanguineous homozygous index cases to unravel UPD as mutational mechanism. This finding may bear major repercussion for genetic counseling, given the markedly reduced risk of recurrence for affected families

    Inhibition of Lithium Sensitive Orai1/ STIM1 Expression and Store Operated Ca2+ Entry in Chorea-Acanthocytosis Neurons by NF-κB Inhibitor Wogonin

    Get PDF
    Background/Aims: The neurodegenerative disease Chorea-Acanthocytosis (ChAc) is caused by loss-of-function-mutations of the chorein-encoding gene VPS13A. In ChAc neurons transcript levels and protein abundance of Ca2+ release activated channel moiety (CRAC) Orai1 as well as its regulator STIM1/2 are decreased, resulting in blunted store operated Ca2+-entry (SOCE) and enhanced suicidal cell death. SOCE is up-regulated and cell death decreased by lithium. The effects of lithium are paralleled by upregulation of serum &#38; glucocorticoid inducible kinase SGK1 and abrogated by pharmacological SGK1 inhibition. In other cell types SGK1 has been shown to be partially effective by upregulation of NFκB, a transcription factor stimulating the expression of Orai1 and STIM. The present study explored whether pharmacological inhibition of NFκB interferes with Orai1/STIM1/2 expression and SOCE and their upregulation by lithium in ChAc neurons. Methods: Cortical neurons were differentiated from induced pluripotent stem cells generated from fibroblasts of ChAc patients and healthy volunteers. Orai1 and STIM1 transcript levels and protein abundance were estimated from qRT-PCR and Western blotting, respectively, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarco-endoplasmatic Ca2+-ATPase inhibitor thapsigargin (1µM), as well as CRAC current utilizing whole cell patch clamp recording. Results: Orai1 and STIM1 transcript levels and protein abundance as well as SOCE and CRAC current were significantly enhanced by lithium treatment (2 mM, 24 hours). These effects were reversed by NFκB inhibitor wogonin (50 µM). Conclusion: The stimulation of expression and function of Orai1/STIM1/2 by lithium in ChAc neurons are disrupted by pharmacological NFκB inhibition
    corecore